Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells.

نویسندگان

  • Mariana J Kaplan
  • Qianjin Lu
  • Ailing Wu
  • John Attwood
  • Bruce Richardson
چکیده

Inhibiting DNA methylation in CD4+ T cells causes aberrant gene expression and autoreactive monocyte/macrophage killing in vitro, and the hypomethylated cells cause a lupus-like disease in animal models. Similar decreases in T cell DNA methylation occur in idiopathic lupus, potentially contributing to disease pathogenesis. The genes affected by DNA hypomethylation are largely unknown. Using DNA methylation inhibitors and oligonucleotide arrays we have identified perforin as a methylation-sensitive gene. Our group has also reported that DNA methylation inhibitors increase CD4+ T cell perforin by demethylating a conserved methylation-sensitive region that is hypomethylated in primary CD8+ cells, which express perforin, but is largely methylated in primary CD4+ cells, which do not. As lupus T cells also have hypomethylated DNA and promiscuously kill autologous monocytes/macrophages, we hypothesized that perforin may be similarly overexpressed in lupus T cells and contribute to the monocyte killing. We report that CD4+ T cells from patients with active, but not inactive, lupus overexpress perforin, and that overexpression is related to demethylation of the same sequences suppressing perforin transcription in primary CD4+ T cells and demethylated by DNA methylation inhibitors. Further, the perforin inhibitor concanamycin A blocks autologous monocyte killing by CD4+ lupus T cells, suggesting that the perforin is functional. We conclude that demethylation of specific regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. Our results also suggest that aberrant perforin expression in CD4+ lupus T cells may contribute to monocyte killing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells.

OBJECTIVE Demethylation of CD11a and CD70 regulatory regions in CD4+ T cells contributes to the development of autoreactivity and overstimulation of autoantibodies. Because growth arrest and DNA damage-induced 45alpha (GADD45alpha) reduces epigenetic silencing of genes by removing methylation marks, this study examined whether the gadd45A gene could contribute to autoimmunity by promoting DNA d...

متن کامل

CD40L demethylation in CD4(+) T cells from women with rheumatoid arthritis.

We have previously demonstrated that DNA demethylation of CD40L on the X chromosome is responsible for female susceptibility to systemic lupus erythematosus (SLE). It is unknown whether aberrant methylation of the CD40L gene also contributes to the higher incidence of rheumatoid arthritis (RA) in females. In this study, we used real-time RT-PCR and flow cytometry to compare CD40L expression lev...

متن کامل

A Possible Role of HMGB1 in DNA Demethylation in CD4+ T Cells from Patients with Systemic Lupus Erythematosus

The aberrant activity of CD4(+) T cells in patients with systemic lupus erythematosus (SLE) is associated with DNA hypomethylation of the regulatory regions in CD11a and CD70 genes. Our previous studies demonstrated that Gadd45a contributes to the development of SLE by promoting DNA demethylation in CD4(+) T cells. In this study, we identified proteins that bind to Gadd45a in CD4(+) T cells dur...

متن کامل

Protein Phosphatase 5 Contributes to the Overexpression of Epigenetically Regulated T-Lymphocyte Genes in Patients with Lupus

OBJECTIVE Lupus develops when genetically predisposed people encounter certain drugs or environmental agents causing oxidative stress such as infections and sun exposure, and then typically follows a chronic relapsing course with flares triggered by the exogenous stressors. Current evidence indicates that these environmental agents can trigger lupus flares by inhibiting the replication of DNA m...

متن کامل

Demethylation of CD40LG on the inactive X in T cells from women with lupus.

Why systemic lupus erythematosus primarily affects women is unknown. Recent evidence indicates that human lupus is an epigenetic disease characterized by impaired T cell DNA methylation. Women have two X chromosomes; one is inactivated by mechanisms including DNA methylation. We hypothesized that demethylation of sequences on the inactive X may cause gene overexpression uniquely in women, predi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 172 6  شماره 

صفحات  -

تاریخ انتشار 2004